1610.

(10) (a) For a review, see: Patai, S., Ed. "The Chemistry of the Hydrazo, Azo, and Azoxy Groups'; Wiley: 1975. (b) White, D. K.; Greene, F. D. J. Am Chem. Soc. 1978, 100, 6760-6761. (c) Yeung, D. W. K.; MacAlpine, G. A.; Warkentin, J. Ibid. 1978, 100, 1962-1964. (d) Crawford, R. J.; Takagi, K. Ibid. 1972, 94, 7406-7416. (e) Porter, N. A.; Dubay, G. R.; Green, J. G. lbid. 1978, 100, 920-925.
(11) (a) For slmpllcity we wlll generally use kcal to indicate $\mathrm{kcal} / \mathrm{mol}$. (b) Comparing the calculated energies for the processes (i) and (ii) leads to an energy difference of 28.5 kcal . This small error is a measure of the internal consistency and accuracy of GVB-Cl calculations.
(12) Assuming that the barrier to NH bond breaking is approximately equal to the ΔH for this process.
(13) (a) Stull, D. R.; Prophet, H. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1971, No. 37. (b) Dlbeler, V. H.; Franklin, J. L.; Reese, R. M. J. Am. Chem. Soc. 1959, 81, 68-73. (c) Evanchko, W. T.; Shevlin, P. B. Ibid. 1978, 100, 6428-6432, and references cited thereln.
(14) For a discussion of the three-electron bond, see: Balrd, N. D. J. Chem. Educ. 1977, 54, 291-293. Greene, F. D.; Burrington, J. D.; Karkowsky, A. M. In "Organic Free Radicals", Pryor, W. A., Ed.; ACS Symposium Series; American Chemical Soclety: Washington, D.C., 1978; pp 122-133.
(15) A thermochemical estimate ${ }^{18 \mathrm{~b}}$ for the N - CH_{3} bond energy of methyldiazenyl radical is -28.3 kcal , also highly exothermic.
(16) (a) Balrd, N. C. J. Chem. Phys. 1975, 62, 300-301. (b) Vasudevan, K.; Peyerimhoff, S. D.; Buenker, R. J. J. Mol. Struct. 1975, 29, 285-297.
(17) McBrlde, W. R.; Kruse, H. W. J. Am. Chem. Soc. 1957, 79, 572-576. See also: King, D. M.; Bard, A. J. Ibid. 1965, 87, 419-423.
(18) Based on $D(H M e N-H)-D(H M e N-M e)=18.5 \mathrm{kcal} / \mathrm{mol}$. Benson, S. W. "Thermochemical Kinetlcs"; Wiley: New York, 1976.
(19) (a) This thermochemical estlmate also predicts that $\square(\mathrm{MeNN}-\mathrm{Me})$ is 53.0
$\mathrm{kcal} / \mathrm{mol}$. The experimental number is $52.5 \mathrm{kcal} / \mathrm{mol} .^{190}$ Although this lends considerable support to the accuracy of the N-H bond energies, the 18.5 - kcal thermochemical correction may not be valid for the rather unusual 1, 1-diazene molecule. (b) Benson, S. W.; O'Neal, H. E. Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 1979, No. 21, 31-34.
(20) Hinsberg III, W. D.; Dervan, P. B. J. Am. Chem. Soc. 1979, 101, 61426144.
(21) See ref 1 b and 1 c for excellent information on the effect of basis set and electron correlation on this energy difference.
(22) Dunning, Jr., T. H. J. Chem. Phys. 1970, 53, 2823-2833.
(23) (a) Harding, L. B.; Goddard III, W. A. J. Am. Chem. Soc. 1975, 97, 6293-6299. (b) lbid. 1975, 97, 6300-6305. (c) Ibid. 1976, 98, 6093-6099. (d) Davls, J. H.; Goddard III, W. A.; Harding, L. B. Ibid. 1977, 99, 2919-2925. (e) Harding, L. B.; Goddard III, W. A. J. Chem. Phys, 1977, 67, 2377-2379. (f) Bobrowicz, F. W.; Goddard III, W. A. In "Modern Theoretlcal Chemlstry: Methods of Electronic Structure Theory"', 3rd ed.; Schaefer III, H. F., Ed.; Plenum Press: New York, 1977; Vol. 3, Chapter 4, pp 79-127. (g) Interpalr terms conslst of simultaneous single excltatlons between palrs of electrons; for this case, $\left(\sigma \rightarrow \sigma^{*}\right) \times\left(\pi \rightarrow \pi^{*}\right)$, which allows dynamic correlation of the σ and π electrons. (h) Since the GVB orbitals have been solved for self-consistently, the vast majorlty of the correlation obtainable in a full Cl among the GVB orbitals (GVB-Cl) is contained in a Cl restricted to GVB-PP wave function plus full order interpalr excitatlons. This is referred to as GVB-RCI. (I) Harding, L. B.; Goddard III, W. A. J. Am. Chem. Soc. 1977, 99, 4520-4523.
(24) Carlotti, M.; Johns, J. W. C.; Trombetti, A. Can. J. Phys. 1974, 52, 340344.
(25) For a review on the HF calculatlon of the energies of "isodesmic" reactions, see: Hehre, W. J. Acc. Chem. Res. 1976, 9, 399-406.
(26) Bondybey, V. E.; Nibler, J. W. J. Chem. Phys. 1973, 58, 2125-2134.

A Palladium-Catalyzed Reaction of a π-Allyl Ligand with a Nucleophile. An MO Study about a Feature of the Reaction and a Ligand Effect on the Reactivity

Shigeyoshi Sakaki,* Masahiro Nishikawa, and Akira Ohyoshi
Contribution from the Department of Industrial Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860 Japan. Received August 13, 1979

Abstract

A CNDO-type MO study was carried out for the reaction between OH^{-}and the π-allyl ligand coordinating to palladium(II), as a model reaction of various nucleophilic attacks on the π-allyl ligand. MO calculations showed the following feature of the reaction: when a nucleophile, Y, approaches the π-allyl ligand, the palladium(11) is reduced to palladium(0), and the π-allyl ligand is eliminated as an allyl derivative, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Y}$, from the palladium(0). This feature agrees with the experimental result. The reactivity regarding the OH^{-}nucleophilic attack increases in the order $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \ll$ $\operatorname{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{B})<\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{A}) \sim\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}<\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{B})<\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ (A) $<\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{B})<\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{A})$, where (A) indicates an inclusion of the $\mathrm{Pd} 4 \mathrm{~d} \pi-\mathrm{CO} \pi * \pi$-acceptor interaction in $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and inclusion of the $\mathrm{Pd} 4 \mathrm{~d} \pi-\mathrm{P} 3 \mathrm{~d} \pi$ interaction in $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$, and (B) indicates exclusion of the interactions. Although the anionic ligand is unfavorable for the reaction, the neutral π-acceptor ligand is favorable. MO calculations support the proposal of Trost et al. that the nucleophilic attack of the carbanion on the π-allyl ligand is accelerated by addition of triphenylphosphine, and that the cationic complex, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$, is an active intermediate. It is discussed why the neutral π-acceptor ligand is favorable for the nucleophilic reaction and why the anionic ligand is unfavorable.

Introduction

It has been known that palladium complexes act as catalysts of various kinds of reactions such as the Wacker reaction, the isomerization and hydrogenation of alkenes, and nucleophilic attack on alkene and π-allyl ligands coordinating to palladium(11). ${ }^{1-3}$ The nucleophilic attack on the ligand seems an important characteristic of the palladium catalysis, because various nucleophilic reactions of carbanion, amine, acetate anion, etc., are considered useful in the field of organic synthesis. ${ }^{4-17}$ A nucleophilic reaction of a carbanion with the π-allyl ligand has been actively studied from the viewpoint of a formation of a new $\mathrm{C}-\mathrm{C}$ bond, $, 4,6,10,14-17$ and it has been noted that addition of a tertiary phosphine greatly accelerates the nucleophilic attack. ${ }^{9,16 a}$

Although many experimental studies have been reported
as described above, no theoretical work has been performed on such a nucleophilic reaction. The theoretical work can characterize a feature of the reaction and can elucidate why the tertiary phosphine accelerates the reaction. Knowledge about these issues seems necessary to advance the study of palladium catalysis. In this work, CNDO-type semiempirical SCF-MO calculations were carried out on some π-allylpalladium complexes, $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}, \operatorname{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{L}=$ CO or $\left.\mathrm{PH}_{3}\right),\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, and $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$, and on a reaction between the OH^{-}and the π-allyl ligand in the above complexes. Although the OH^{-}has not been known to react with the π-allyl ligand to form allyl alcohol, the OH^{-}is considered here as a model of a usual nucleophile such as phenoxide, acetate, carbanion, etc. The purpose of this work is twofold; first, to elucidate how the electronic structure of the palladium complex is changed by the nucleophilic attack;
second, to investigate the ligand effect on the reactivity, especially to elucidate why the tertiary phosphine accelerates the nucleophilic attack.

MO Calculations

A CNDO-type semiempirical SCF-MO method, described elsewhere, ${ }^{18-20}$ was employed. This MO method gives successful results regarding electronic structures, stereochemistry, and electronic spectra of transition-metal complexes. ${ }^{18-20}$ Parameters of the Pd and P atoms used here are described in the Appendix.

The quantity E_{AB} was used as a bond index, ${ }^{21,22}$ and is defined as an energetic contribution of the $A B$ bond to the total energy as follows: ${ }^{18-20}$

$$
\begin{aligned}
& E_{\mathrm{AB}}=E_{\mathrm{AB}}^{(1)}+E_{\mathrm{AB}}^{(2)}+E_{\mathrm{AB}}^{(3)}=2 \sum_{r}^{\mathrm{A}} \sum_{s}^{\mathrm{B}} P_{r s} H_{r s} \\
& \quad-0.5 \sum_{r}^{\mathrm{A}} \sum_{s}^{\mathrm{B}} P_{r s}^{2} \gamma_{r s}+\sum_{r}^{\mathrm{A}} \sum_{s}^{\mathrm{B}}\left(P_{r r}-N_{r}\right)\left(P_{s s}-N_{S}\right) \gamma_{r s}
\end{aligned}
$$

A large negative E_{AB} value indicates a strong bond between the A and the B atoms. The $E_{\mathrm{AB}}{ }^{(1)}+E_{\mathrm{AB}}{ }^{(2)}\left(=E_{\mathrm{AB}}{ }^{(1)+(2)}\right)$ approximately represents the strength of the covalent interaction, while $E_{\mathrm{AB}}{ }^{(3)}$ represents the strength of the electrostatic interaction.

The π back-donative interaction (the $\mathrm{Pd} 4 \mathrm{~d} \pi-\mathrm{CO} \pi^{*}$ and the $\mathrm{Pd} 4 \mathrm{~d} \pi-\mathrm{P} 3 \mathrm{~d} \pi$) is considered to play an important role in the coordination of the carbonyl and the phosphine ligands. In this work, the effect of such a π back-donative interaction was examined as follows: the overlaps between the $\operatorname{Pd} 4 \mathrm{~d} \pi$ and the C and $\mathrm{O} 2 \mathrm{p}_{\pi}$ orbitals were neglected in some MO calculations both of $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ $\leftarrow \mathrm{OH}^{-}$, while these overlaps were explicitly included in other calculations. ${ }^{23 a}$ Also, the 3d π orbitals of the P atom were excluded from the basis set in some MO calculations on both of the π-allylpalladium complexes including the PH_{3} ligand and their reaction systems, while these 3d's were included in other calculations. ${ }^{23 \mathrm{~b}} \mathrm{MO}$ calculations including the π back-donative interaction were termed A and those excluding them were B in this work.

A technique, called configuration analysis, was employed in order to investigate how the electronic structure of π-allylpalladium complexes is changed by a nucleophilic attack of the OH^{-}. Since this technique has been described elsewhere, ${ }^{24}$ it is briefly described here. A Slater determinant Ψ of a reaction system, π-allylpalladium complex $+\mathrm{OH}^{-}$, is represented by a linear combination of configuration interaction (CI) wave functions as follows:

$$
\begin{aligned}
\Psi=C_{0} \Phi_{0} & +\sum_{i}^{\text {occ unocc }} \sum_{i} C_{i \rightarrow l} \Phi_{i \rightarrow l}+\sum_{k}^{\text {occ }} \sum_{j}^{\text {unocc }} C_{k \rightarrow j} \Phi_{k \rightarrow j} \\
& +\sum_{i}^{\text {occ unocc }} \sum_{j} C_{i \rightarrow j} \Phi_{i \rightarrow j}+\sum_{k}^{\text {occ unocc }} \sum_{l} C_{k \rightarrow i} \Phi_{k \rightarrow l}+\ldots
\end{aligned}
$$

where the Ψ is constructed from MOs ψ of the whole reaction system and the $\Phi_{i \rightarrow j}$, etc., is constructed from MOs ϕ_{m} of the π-allylpalladium complex and $\phi_{n}{ }^{\prime}$ of the OH^{-}anion. The i and k mean occupied MOs of the π-allylpalladium complex and those of the OH^{-}, respectively, while the l and j mean unoccupied MOs of the π-allylpalladium complex and those of the OH^{-}, respectively. See ref 24 for a more detailed description. The coefficients $C_{i \rightarrow j}$, etc., are obtained from MO expansion coefficients $a_{m j}$ and $b_{n j}$:

$$
\psi_{j}=\sum_{m} a_{m j} \phi_{m}+\sum_{n} b_{n j} \phi_{n}^{\prime}
$$

where the Σ_{m} and Σ_{n} mean a summation on MOs of the π-allylpalladium complex and on MOs of the OH^{-}, respectively. From the coefficients $C_{i \rightarrow j}$, etc., we can obtain valuable information about the electronic structure of the reaction

Figure 1. Coordinate system of the π-allylpalladium complexes and the course of the OH^{-}attack on the π-allyl ligand $\mathrm{L}_{1}, \mathrm{~L}_{2}=\mathrm{Cl}, \mathrm{CO}$, or PH_{3}. $\mathrm{L}_{1}=\mathrm{Cl}$ and $\mathrm{L}_{2}=\mathrm{CO}$ or PH_{3} in $\mathrm{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$.
system; for example, it can be elucidated what kinds of charge transfers between the palladium and the OH^{-}are caused by the OH^{-}attack and what kinds of polarizations are caused in the π-allylpalladium complex by the OH^{-}attack.

Geometries

The geometry of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ was taken from an X-ray study. ${ }^{25}$ The geometry of $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$was assumed to be similar to that of the $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ part of $[\mathrm{PdCl}(\pi-$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, because no X-ray study has been reported. The geometries of $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ and $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$ were assumed as follows. The Pd- P bond length was taken to be $2.30 \AA$ from an X-ray study. ${ }^{26}$ The other parts, $\operatorname{PdCl}(\pi$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)$ of the former and $\mathrm{Pd}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ of the latter, were taken to be similar to the corresponding part of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$. The geometry of $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ was assumed as follows. The Pd-CO bond length was arbitrarily taken to be $1.82 \AA$ by considering the $\mathrm{Pt}-\mathrm{CO}$ bond length of $\mathrm{PtCl}_{3}(\mathrm{CO})^{-},{ }^{27}$ for no X -ray data had been reported about the $\mathrm{Pd}-\mathrm{CO}$ bond length, as far as the authors were aware. The $\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ part was taken to be similar to that of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$. The ClPdCl^{\prime}, CIPdP, and PPdP' angles of the above complexes were assumed to be the same as the ClPdCl angle of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, because no X-ray data has been reported on these angles. This assumption does not seem unreasonable, for the ClPdCl^{\prime} angle of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ is nearly equal to 90°.

The nucleophilic attack of the OH^{-}anion was investigated as a model reaction of various nucleophiles, as described in the Introduction. Trost et al. and \AA kermark et al. have reported that nucleophiles such as the carbanion and the amine directly attack the π-allyl ligand on the face opposite to the palladium. ${ }^{12.16 b .28}$ Although Numata and Kurosawa have reported another reaction path in which the aryl anion first coordinates to the palladium(II) and then attacks the π-allyl ligand, ${ }^{29}$ the present reaction path was taken to be similar to that proposed by Trost et al. and \AA kermark et al.; the OH^{-}directly attacks the π-allyl ligand from the side opposite to the palladium, and the lone-pair orbital of the OH^{-}is perpendicular to the face of the π-allyl ligand, as is depicted in Figure 1.

Results and Discussion

Electronic Structures of π-Allylpalladium Complexes. First, the electronic structures and the coordinate bonding nature of π-allylpalladium complexes will be briefly examined. The electron distribution and the relative binding energy, ΔE_{b}, are given in Table 1 (see ref 30 for the definition of ΔE_{b}). The following characteristics are found: (1) the electron densities of the C_{1} and C_{3} atoms are remarkably reduced by the π-allyl coordination. (2) The $n \pi$ orbital of the π-allyl ligand denotes a large amount of electrons to the palladium(II), while the π orbital denotes a small amount of electrons and the π^{*} orbital receives extremely small amounts of electrons (see Scheme 1 for $\pi, \mathrm{n} \pi$, etc., and see $\Delta q(\pi), \Delta q\left(\pi^{*}\right)$, etc., in Table 1). The electron donation from $n \pi$ becomes large as the LUMO of $\mathrm{PdCl}_{2}, \mathrm{PdClL}^{+}\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$, and $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}{ }^{2+}$ becomes

Table I. Electron Distribution of π-Allylpalladium Complexes

		C_{1}	C_{2}	C_{3}	$\Delta q(\mathrm{n} \pi)^{a}$	$\Delta q(\pi)^{a}$	$\Delta q\left(\pi^{*}\right)^{b}$	$\Delta E_{\mathrm{b}}{ }^{c}$	ϵ LUMO $^{\text {d }}{ }^{\text {d }}$
$\mathrm{C}_{3} \mathrm{H}_{5}$		4.519	3.895	4.519					
$\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$		4.353	3.925	4.353	0.481	0.093	0.028	0.0	-5.18
$\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$	(B)	4.315	3.931	4.268	0.661	0.099	0.028	4.5	-9.85
	(A)	4.296	3.938	4.253	0.713	0.102	0.029	5.1	-10.22
$\left[\mathrm{PdCl}\left(\pi \cdot \mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$		4.267	3.943	4.267	0.737	0.102	0.028	5.3	-10.29
$\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$	(B)	4.285	3.940	4.240	0.746	0.099	0.028	5.7	-11.11
	(A)	4.263	3.950	4.225	0.798	0.100	0.030	6.0	-11.31
$\operatorname{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$	(B)	4.221	3.940	4.221	0.864	0.105	0.029	9.7	-14.70
	(A)	4.187	3.953	4.187	0.972	0.110	0.031	10.9	-15.39

${ }^{a} \Delta q(\mathrm{n} \pi)$ and $\Delta q(\pi)$ are decreases in the electron numbers of the $\mathrm{n} \pi$ and π orbitals caused by the coordination; $\Delta q(\mathrm{n} \pi)=$ [electron numbers on the $n \pi$ orbital of the free π-allyl ligand] - [electron numbers on the same orbital in the complex], and $\Delta q(\pi)$ is similarly defined. ${ }^{b} \Delta q\left(\pi^{*}\right)$ is an increase in the electron number' on the π^{*} orbital caused by the coordination; $\Delta q\left(\pi^{*}\right)=$ [electron numbers on the π^{*} orbital in the complex] - [electron numbers on the π^{*} orbital in the free ligand]. c The relative binding energy; the binding energy of $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$was taken to be the standard (eV). See ref 30 . ${ }^{d}$ The LUMO orbital energy of $\mathrm{PdCl}_{2}, \mathrm{PdCl}\left(\mathrm{PH}_{3}\right)^{+}, \mathrm{Pd}_{2} \mathrm{Cl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$, etc. (eV).

Figure 2. Important interactions between the Pd and the π-allyl ligand. The ϕ_{1} and ϕ_{2} are occupied, while the ϕ_{3} and ϕ_{4} are unoccupied.
stable. The LUMO is mainly composed of the $\operatorname{Pd} 4 \mathrm{~d}_{x y}$. (3) The ΔE_{b} value becomes large, as the electron donation from the $\mathrm{n} \pi$ orbital increases. The results (2) and (3) suggest that the π-allyl coordination is mainly due to the electron donation from its $\mathrm{n} \pi$ orbital to the $\mathrm{Pd} 4 \mathrm{~d}_{x y}$ orbital, while the π-allyl coordination is somewhat enhanced by the electron donation from the π orbital to the Pd . The result (1) is attributed to the electron donation from the $n \pi$ orbital; since the $n \pi$ orbital is composed of the $2 \mathrm{p}_{\pi}$ orbitals on the C_{1} and C_{3}, the electron donation from the $n \pi$ remarkably reduces the electron densities of the C_{1} and C_{3} atoms.

Some important orbitals of π-allylpalladium complex, $\phi_{1} \sim \phi_{4}$, are schematically shown in Figure 2. The ϕ_{1} corresponds to electron donation from the π orbital to the Pd . The ϕ_{1} mixes considerably with the σ MO of the π-allyl ligand obeying the same symmetry. The ϕ_{2} corresponds to electron donation from the $n \pi$ to the Pd. This ϕ_{2} contributes mainly to the coordinate bond. In unoccupied levels, two orbitals are noted; in the ϕ_{3} the $n \pi$ orbital interacts antibondingly with the $\operatorname{Pd} 4 \mathrm{~d}_{x y}$, and in the ϕ_{4} the π^{*} orbital interacts antibondingly with the $\operatorname{Pd} 5$ s. These $\phi_{1} \sim \phi_{4}$ are expected to be changed by the nucleophilic attack, which alters the electronic structure and the coordinate bonding nature of π-allylpalladium complexes.

Reactivity of Various π-Allylpalladium Complexes to a Nucleophilic Attack. MO calculations were performed on the reaction systems between the π-allylpalladium complex and the OH^{-}. It must be determined which carbon atom of the π-allyl ligand receives nucleophilic attack. The present MO calculations suggest that the C_{2} attack would be less possible than the C_{1} and C_{3} attacks, because the total energy of the C_{2}-attack system is less stable than the total energies of the $\mathrm{C}_{1}{ }^{-}$ and C_{3}-attack systems; for example, the former is less stable than the latter by ca. 0.5 eV in $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-}$ (A) at $\mathrm{C}-\mathrm{O}=2.0 \AA$. Experiments also show that the C_{2} attack

Scheme I

$n \pi$
does not occur, because no product derived from the C_{2} attack has been found. Thus, the C_{2} attack was excluded from the present consideration. No experimental observation elucidates which of the two, the C_{1} or C_{3} attack, occurs in $\operatorname{PdClL}(\pi$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$. Although the total energy of the C_{3} attack is calculated to be slightly more stable than the total energy of the C_{1} attack, the difference in total energy between the C_{1} and C_{3} attacks is too small to be meaningful. The C_{1} attack cannot be ruled out completely, and both possibilities were examined here. But the electronic structure and the bonding nature of the C_{1}-attack system are essentially the same as those of the C_{3}-attack system. The results of the C_{3} attack are mainly listed in tables and mainly discussed, because the C_{3} attack is slightly more stable than the C_{1} attack, and a similar discussion can be presented for the C_{1} attack. Some results of the C_{1} attack are given in tables.

The total energy change due to the OH^{-}attack is shown in Figure 3, where the total energy change, ΔE_{1}, is defined as follows: $\Delta E_{1}=$ [the total energy of the reaction system, π-allylpalladium complex $+\mathrm{OH}^{-}$] - [the total energy of the π-allylpalladium complex] - [the total energy of the OH^{-}]. It should be noted that only one reaction system, $\mathrm{PdCl}_{2}(\pi-$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-}$, is destabilized by the OH^{-}attack at $R_{\mathrm{C}_{3}-\mathrm{O}}$ $=3.0-2.0 \AA$, and that others are stabilized by the OH^{-}attack. Because no geometrical optimization was carried out, the ΔE_{1} values themselves are not very meaningful. However, their relative values are expected to reflect the relative reactivity of π-allylpalladium complex. Furthermore, the ΔE_{1} values do not cross with each other, going from $R_{\mathrm{C}_{3}-\mathrm{O}}=2.0 \AA$ to $R_{\mathrm{C}_{3}-\mathrm{O}}$ $=1.5 \AA$. Thus, the relative reactivity may be discussed by using the ΔE_{1} value at either $R_{\mathrm{C}_{3}-\mathrm{O}}=2.0$ or $1.5 \AA$.

A comparison of ΔE_{1} at $R_{\mathrm{C}_{3}-\mathrm{O}}=2.0 \AA$ reveals that reactivity increases in the following order: $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}(1.3$ $\mathrm{eV})<\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{B})(-1.8 \mathrm{eV})<\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)-$ $\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{A})(-2.2 \mathrm{eV}) \sim\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}(-2.2 \mathrm{eV})<$ $\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{B})(-2.4 \mathrm{eV})<\mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$ (A) $(-2.8 \mathrm{eV})<\operatorname{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$(B) $(-5.0 \mathrm{eV})<$ $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{A})(-5.9 \mathrm{eV})$, where the values in parentheses represent the ΔE_{1} values at $R_{\mathrm{C}-\mathrm{O}}=2.0 \AA$ and both the C_{1} and C_{3} attacks give almost the same stabilization energy in $\mathrm{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-}\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$. The above result indicates that the nucleophilic attack is accelerated by the presence of a neutral ligand, and that a neutral π-acceptor ligand, such as $\mathrm{PH}_{3}(\mathrm{~A})$ or $\mathrm{CO}(\mathrm{A})$, is more favorable for the

Table II. Electron Distribution and Bond Strength of the Reaction System π-Allylpalladium Complex $+\mathrm{OH}^{-}$

$R^{\text {C-O }}$	$\underline{\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{A})}$			$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{B})$			$\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{A})^{a}$			$\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$		
		2.0	1.5	-	2.0	1.5	-	2.0	1.5	∞	2.0	1.5
Electron Density												
Pd	9.96	10.22	10.30	9.99	10.30	10.48	9.86	10.11	10.26	9.77	9.96	10.13
Pd 4dxy	1.13	1.63	1.84	1.04	1.45	1.73	0.94	1.34	1.68	0.75	0.98	1.26
C_{1}	4.19	4.14	4.18	4.22	4.18	4.19	4.30	4.23	4.22	4.35	4.31	4.31
C_{2}	3.95	3.96	3.95	3.94	3.95	3.98	3.94	3.97	4.01	3.93	3.95	4.12
C_{3}	4.19	3.94	3.88	4.22	3.95	3.84	4.25	3.94	3.83	4.35	4.03	3.81
$\mathrm{L}_{1}{ }^{\text {b }}$	7.71	7.87	7.95	7.64	7.72	7.76	7.50	7.60	7.65	7.55	7.63	7.68
$\mathrm{L}_{2}{ }^{\text {c }}$	7.71	7.88	7.95	7.64	7.73	7.76	7.75	7.91	8.05	7.55	7.64	7.67
Bond Strength Described by $E_{\text {AB }}(\mathrm{eV})$												
$E_{\mathrm{C}_{1}-\mathrm{C}_{2}}$	-27.3	-28.5	-29.5	-27.3	-28.0	-28.8	-27.3	-27.7	-28.6	-27.5	-27.0	-26.3
$E_{\mathrm{C}_{2}-\mathrm{C}_{3}}$	-27.3	-25.6	-23.5	-27.3	-26.0	-23.7	-27.5	-26.3	-23.9	-27.5	-27.2	-24.7
$E_{\text {Pd-C }}$	-9.0	-7.7	-6.9	-9.2	-8.2	-7.4	-9.5	-8.5	-7.6	-9.4	-9.4	-9.2
$E_{\text {Pd-C }}{ }^{\text {d }}$	-6.6	-6.8	-6.9	-6.6	-6.9	-7.2	-6.6	-6.9	-7.2	-6.5	-6.8	-7.6
$E_{\text {Pd-C }}$	-9.0	-7.1	-5.9	-9.2	-7.7	-6.4	-9.3	-7.9	-6.3	-9.4	-8.5	-6.8
$E_{\text {Pd-L }}$	-13.3	-13.4	-13.6	-12.4	-11.7	-11.4	-11.8	-10.2	-9.1	-12.2	-11.0	-9.9
$E_{\text {Pd-L }{ }_{2}}$	-13.3	-13.3	-13.4	-12.4	-11.8	-11.6	-13.4	-13.6	-14.1	-12.2	-10.9	-9.9
$E_{\text {C-O }}$		-5.1	-15.5		-4.3	-15.3		-3.8	-15.2		-1.9	-14.0

${ }^{a}$ Results of the C_{3} attack are given. The C atom trans positioned to the PH_{3} is attacked by the nucleophile. ${ }^{b} \mathrm{~L}_{1}=\mathrm{PH}_{3}$ cis positioned to the attacked C atom in $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$. $\mathrm{L}_{1}=\mathrm{Cl}^{-}$in $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$. $\mathrm{L}_{1}=\mathrm{Cl}^{-}$cis positioned to the attacked C atom in $\mathrm{PdCl}_{2}(\pi-$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} .{ }^{c} \mathrm{~L}_{2}=\mathrm{PH}_{3}$ trans positioned to the attacked C atom in $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+} . \mathrm{L}_{2}=\mathrm{PH}_{3}$ in $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) . \mathrm{L}_{2}=\mathrm{Cl}^{-}$trans positioned to the attacked C atom.
reaction than a neutral ligand without π-acceptor orbital, such as $\mathrm{PH}_{3}(\mathrm{~B})$ and $\mathrm{CO}(\mathrm{B})$.

Trost et al. studied nucleophilic attack of a carbanion on the π-allylpalladium complex $\left[\operatorname{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, and found that, although the malonate anion led to no reaction without addition of triphenylphosphine, addition of at least 4 equiv of triphenylphosphine allowed the reaction to proceed in minutes at room temperature. ${ }^{9,16 a}$ They suggested that the cationic complex shown in Scheme II is a reactive intermediate. It is interesting to examine their suggestion. Addition of 2 equiv of triphenylphosphine would yield $\mathrm{PdCl}\left(\mathrm{PPh}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$. According to the present MO calculations, its reactivity is almost the same as that of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$. However, addition of 4 equiv of triphenylphosphine would yield $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}(\pi$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$. Its reactivity was calculated to be much greater than that of $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, as described in the above. Thus, the present MO calculations support the reactive intermediate suggested by Trost et al.

On the other hand, the anionic ligand is suggested to be unfavorable for the reaction. For example, $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$ is expected to be unreactive. This complex is formed from $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$ by addition of $\mathrm{KCl} .{ }^{31}$ Thus, it can be predicted that addition of KCl depresses the nucleophilic reaction.

In conclusion, the neutral π-acceptor ligand is favorable for the nucleophilic attack. The intermediate suggested by Trost et al., $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$, is supported by the present MO calculation.

How the Electronic Structure of π-Allylpalladium Changes Due to the $\mathbf{O H}^{-}$Attack. Let us see how the electronic structure of the reaction system, $\operatorname{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-}$, etc., changes during the reaction. Table II gives the electron distribution and E_{AB} values of $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+} \leftarrow \mathrm{OH}^{-}(\mathrm{A})$ and (B), $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-}(\mathrm{A})$, and $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow$ OH^{-}, as examples, where the C_{1} attack is omitted here, because very similar results are obtained in both the C_{1} and C_{3} attacks. The following characteristics are found in the former three: (1) As the OH^{-}approaches the π-allyl ligand and the $\mathrm{C}_{3}-\mathrm{O}$ bond is formed, the electron density of $\mathrm{Pd}, \mathrm{C}_{2}, \mathrm{Cl}$, and PH_{3} increases, that of the C_{3} remarkably decreases, and that of the C_{1} decreases slightly. The electron density of the $\mathrm{Pd} 4 \mathrm{~d}_{x y}$ increases remarkably, which increases the electron density of the Pd . (2) The absolute value of $E_{\mathrm{C}_{1}-\mathrm{C}_{2}}$ becomes increasingly large, while that of $E_{\mathrm{C}_{2}-\mathrm{C}_{3}}$ becomes increasingly small. The

Figure 3. Total energy changes of the π-allylpalladium $+\mathrm{OH}^{-}$reaction system. ΔE_{t} (eV unit). Result of the C_{3} attack is presented for $\operatorname{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$.

Scheme II

absolute values of $E_{\mathrm{Pd}-\mathrm{C}_{1}}, E_{\mathrm{Pd}-\mathrm{C}_{3}}$, and $E_{\mathrm{Pd}-\mathrm{Cl}}$ become increasingly small, while that of $E_{\mathrm{Pd}-\mathrm{C}_{2}}$ becomes increasingly large. The absolute value of $E_{\mathrm{Pd}-\mathrm{PH}_{3}}$ becomes slightly larger in (A), while it becomes slightly smaller in (B). (3) The sum of the absolute values, $E_{\mathrm{Pd}-\mathrm{C}_{1}}, E_{\mathrm{Pd}-\mathrm{C}_{2}}$, and $E_{\mathrm{Pd}-\mathrm{C}_{3}}$, becomes small. Similar results were obtained in the other reaction systems except for $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-}$. In the latter reaction system, some differences were found: (1) The electron densities of the Pd and its $4 \mathrm{~d}_{x y}$ orbital become large to a lesser extent than those of the other reaction systems. (2) The ab solute value of $E_{\mathrm{C}_{1}-\mathrm{C}_{2}}$ decreases slightly, while this value in-

Table III. Coefficients of Some Important CI Wave Functions ${ }^{a}$

Cl wave function ${ }^{\text {b }}$		$\phi_{n} \rightarrow \phi_{3}$	$\phi_{n} \rightarrow \phi_{4}$	$\phi_{2} \rightarrow \phi_{3}$	$\phi_{2} \rightarrow \phi_{4}$	$\phi_{1} \rightarrow \phi_{3}{ }^{c}$
$\begin{aligned} & \mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-} \\ & \operatorname{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-} \end{aligned}$	(B)	0.232	0.193	-0.231	-0.121	-0.002
		0.327	0.200	-0.250	-0.104	-0.118
		(0.334	0.179	-0.254	-0.090	$-0.131)^{d}$
	(A)	0.347	0.179	-0.265	-0.083	-0.138
$\begin{aligned} & {\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2} \leftarrow \mathrm{OH}^{-}} \\ & \mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \leftarrow \mathrm{OH}^{-} \end{aligned}$	(B) (A)	0.359	0.180	-0.201	-0.091	-0.144
		0.353	0.202	-0.250	-0.092	-0.140
		0.386	0.185	-0.266	-0.068	-0.147
		10.394	0.169	-0.272	-0.064	$-0.151)^{d}$
$\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+} \leftarrow \mathrm{OH}^{-}$	(B)	0.424	0.169	-0.256	-0.073	-0.160
	(A)	0.468	0.154	-0.295	-0.048	-0.172

${ }^{a}$ One electron transfer type CI wave function. $R_{\mathrm{C}-\mathrm{O}}=2.0 \AA$. ${ }^{b}$ See Figure 2 for π_{1}, π_{2}, etc. ${ }^{c}$ The ϕ_{1} mixes considerably with other σ MOs of the π-allyl ligand obeying the same symmetry. This value is a sum of product of $C_{j 3}$ and the $a_{\pi j}$, where the $C_{j 3}$ is the coefficient of the ϕ_{j} $\rightarrow \phi_{3} \mathrm{Cl}$ wave function ($j=$ occupied MO of the π-allylpalladium complex) and the $a_{\pi j}$ is the coefficient of the π-allyl π orbital in representing the π allylpalladium ϕ_{j} orbital with linear combination of MOs of π-allyl ligand and fragment $\mathrm{PdCl}_{2}, \mathrm{PdClL}$, etc. ${ }^{d}$ Results in parentheses for the C_{1} attack.

(a) $\phi_{n}-\phi_{3}$
(b) $\phi_{n}-\phi_{4}$

$-\phi_{2}$

(c)
$\phi_{2}-\phi_{3}$

(d)

$-\phi_{1}$

(e) $\phi_{1}-\phi_{3}$

Figure 4. Schematic pictures of orbital mixings between the π-allylpalladium and the OH^{-}, (a) and (b), and the orbital mixing of intra $\cdot \pi$-allylpalladium complex, (c) and (e). The plus sign means the in-phase mixing presented here, while the minus sign means the out-of-phase mixing.
creases in the other reaction systems. (3) The absolute value of $E_{\mathrm{Pd}_{-1}}$ changes little at $R_{\mathrm{C}_{3}-\mathrm{O}}=2.0 \AA$ and then decreases at $R_{\mathrm{C}_{3}-\mathrm{O}}=1.5 \AA$. The sum of the absolute values, $E_{\mathrm{Pd}-\mathrm{C}_{1}}$, $E_{\mathrm{Pd}_{-\mathrm{C}_{2}}}$, and $E_{{\mathrm{Pd}-\mathrm{C}_{3}} \text {, also increases at } R_{\mathrm{C}_{3}-\mathrm{O}}=2.0 \AA \text { and then }, ~}^{\text {a }}$ decreases at $R_{\mathrm{C}_{3}-\mathrm{O}}=1.5 \AA$.

A feature of the nucleophilic reaction is given as follows from the above results except for the reaction between $\mathrm{PdCl}_{2}(\pi$ $\left.\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$and OH^{-}. As the $\mathrm{C}_{3}-\mathrm{OH}$ bond is formed, the palladium(II) is reduced to palladium(0). The $\mathrm{C}_{1}-\mathrm{C}_{2}$ becomes stronger and the $\mathrm{C}_{2}-\mathrm{C}_{3}$ weakens, suggesting that, while the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond becomes a $\mathrm{C}-\mathrm{C}$ single bond, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ becomes a $\mathrm{C}=\mathrm{C}$ double bond. The $\mathrm{Pd}-\mathrm{C}_{2}$ bond becomes as strong as the $\mathrm{Pd}-\mathrm{C}_{1}$, and the $\mathrm{Pd}-\mathrm{C}_{3}$ bond weakens, suggesting that the π-allyl coordination changes to the $\mathrm{C}=\mathrm{C}$ double bond coordination to form a π-olefin palladium(0) complex. Since the

Scheme III

sum of the absolute values, $E_{\mathrm{Pd}-\mathrm{C}_{1}}, E_{\mathrm{Pd}-\mathrm{C}_{2}}$, and $E_{\mathrm{Pd}-\mathrm{C}_{3}}$, decreases, the π-olefin coordination weakens and the π-olefin group ($=$ the product, i.e., allyl derivative) finally leaves the palladium(0). This feature, schematically shown in Scheme III, agrees with experiments; ${ }^{4}$ the carbanion, $\mathrm{CH}_{3} \mathrm{CO}$ -CHCOOR^{-}, attacks the π-allylpalladium, $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, in $\mathrm{Me}_{2} \mathrm{SO}$ to yield $\mathrm{CH}_{2} \mathrm{COC}\left(\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right) \mathrm{HCOOR}$, metallic palladium, and $\mathrm{HCl} .^{4}$ It is noted in Scheme III that the π-olefin palladium (0) complex experimentally suggested as an intermediate ${ }^{16 a}$ is also supported by the present MO calculations.

In $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-}$, the palladium(II) is reduced to palladium(0) with more difficulty than the others, both the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond and the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond weaken or obtain some single bond character, and the π-allyl group coordinates more strongly to the palladium(0). This feature disagrees with Scheme III. Again, this reaction system is suggested to be unreactive, as has been shown by the ΔE_{1} curve in Figure 3.

Configuration analysis of the π-allylpalladium $+\mathrm{OH}^{-}$reaction system was performed in order to investigate the above feature in more detail. Table 111 gives coefficients of some important CI wave functions, $\phi_{\mathrm{n}} \rightarrow \phi_{3}, \phi_{\mathrm{n}} \rightarrow \phi_{4}, \phi_{2} \rightarrow \phi_{3}, \phi_{2}$ $\rightarrow \phi_{4}$, and $\phi_{1} \rightarrow \phi_{3}$, where ϕ_{n} is the lone-pair orbital of the OH^{-}and the $\phi_{1} \sim \phi_{4}$ are pictured in Figure 2. It is noted that the coefficients of $\phi_{\mathrm{n}} \rightarrow \phi_{3}$ and $\phi_{1} \rightarrow \phi_{3} \mathrm{Cl}$ wave functions increase with an increase in the reactivity, except for $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$, and that the coefficient of the $\phi_{1} \rightarrow \phi_{3} \mathrm{Cl}$ wave function is negligibly small in $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$, the most unreactive system. These results suggest that the $\phi_{\mathrm{n}} \rightarrow \phi_{3}$ and $\phi_{1} \rightarrow \phi_{3}$ mixings are important. The above mixings are schematically shown in Figure 4, where the phase of ϕ_{1}, etc., is taken as is shown in Figure 2. The $\mathrm{C}_{3}-\mathrm{OH}$ bonding interaction is formed by the $\phi_{\mathrm{n}} \rightarrow \phi_{3}$ and $\phi_{\mathrm{n}} \rightarrow \phi_{4}$ mixings, as is shown in Figures 4 a and 4 b . The $\phi_{2} \rightarrow \phi_{3}$ mixing, shown in Figure 4c, lowers the electron densities of the C_{1} and C_{3} atoms and increases the electron density of the $\mathrm{Pd} 4 \mathrm{~d}_{x y}$ orbital. This mixing also decreases the overlap between the $P d 4 \mathrm{~d}_{x y}$ and the π-allyl $\mathrm{n} \pi$ orbital. Thus, palladium(II) is reduced to palladium(0) and the coordinate bond of the π-allyl ligand is weakened by this mixing. The $\phi_{2} \rightarrow \phi_{4}$ mixing, shown in Figure 4d, lowers the electron density of C_{3}, increases that of C_{1}, strengthens the $\mathrm{Pd}-\mathrm{C}_{1}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$ bonds, and weakens the $\mathrm{Pd}-\mathrm{C}_{3}$ and $\mathrm{C}_{1}-\mathrm{C}_{2}$ bonds. Although the $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond should become a single bond and the $\mathrm{C}_{1}-\mathrm{C}_{2}$ should become a double bond after the reaction,
this mixing does not cause such changes. Thus, the $\phi_{2} \rightarrow \phi_{4}$ mixing is unfavorable for the reaction. The $\phi_{1}-\phi_{3}$ mixing, shown in Figure 4e, increases the electron density of the C_{1} atom, reduces the electron density of the C_{3}, strengthens the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond, and weakens the $\mathrm{C}_{2}-\mathrm{C}_{3}$. Also, the Pd- C_{2} bond becomes stronger than the $\mathrm{Pd}-\mathrm{C}_{1}$ due to this mixing. These changes agree with the overall changes of the reaction. Regarding the $\mathrm{C}_{1}-\mathrm{C}_{2}$ and $\mathrm{C}_{2}-\mathrm{C}_{3}$ bond strength, the $\phi_{1} \rightarrow \phi_{3}$ mixing gives the result reverse to that caused by the $\phi_{2} \rightarrow \phi_{4}$ mixing. Where the $\phi_{2} \rightarrow \phi_{4}$ mixing is less than the $\phi_{1} \rightarrow \phi_{3}$ one, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond becomes strong, the $\mathrm{C}_{2}-\mathrm{C}_{3}$ becomes weak, and the reaction proceeds easily, and vice versa. A good example is the $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-}$reaction system, which is the most unreactive. As is shown in Table III, the coefficient of the $\phi_{2} \rightarrow \phi_{4}$ CI wave function is the largest of the complexes examined, whereas the coefficient of the $\phi_{1} \rightarrow \phi_{3}$ CI wave function is negligibly small. Consequently, as the nucleophile approaches the π-allyl ligand, the $\mathrm{C}_{1}-\mathrm{C}_{2}$ bond becomes weak and the $\mathrm{C}_{2}-\mathrm{C}_{3}$ becomes slightly weak in $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \leftarrow \mathrm{OH}^{-}$. Thus, the reaction is difficult in this system. In contrast to this system, the $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$ $\leftarrow \mathrm{OH}^{-}(\mathrm{A})$ reaction system has the smallest coefficient of the $\phi_{2} \rightarrow \phi_{4} \mathrm{CI}$ wave function and the greatest coefficient of the $\phi_{1} \rightarrow \phi_{3} \mathrm{CI}$ wave function. The latter system is the most reactive.

In conclusion, the changes in electronic structure are successfully explained in terms of the $\phi_{n}-\phi_{3}, \phi_{n}-\phi_{4}, \phi_{1}-\phi_{3}$, and $\phi_{2}-\phi_{4}$ mixings. The $\phi_{\mathrm{n}}-\phi_{3}$ and $\phi_{\mathrm{n}}-\phi_{4}$ mixings are important for the formation of the $\mathrm{C}_{3}-\mathrm{OH}$ bond. The former mixing seems more important than the latter for the following reasons: (1) the coefficient of the former is much greater than the latter, and (2) the coefficient of the former increases with an increase in the reactivity, while the coefficient of the latter does not always increase with an increase in the reactivity. The $\phi_{2}-\phi_{3}$ and $\phi_{1}-\phi_{3}$ mixings play important roles to cause the changes in electronic structure shown in Scheme II, whereas the $\phi_{2}-\phi_{4}$ one causes unfavorable changes in the electronic structure. Thus, the $\phi_{\mathrm{n}}-\phi_{3}, \phi_{1}-\phi_{3}$, and $\phi_{2}-\phi_{3}$ mixings are especially important.

Origin of the Ligand Effect. Now it has to be studied how the reactivity depends on the ligand. The reactivity is expected to depend on three factors: (1) how easily the orbital mixings occur with the nucleophilic attack, (2) whether the Pd-L bond becomes weakened or strengthened during the reaction, and (3) how much the electron density on the C atom influences the reactivity.

First, the orbital mixing will be investigated. According to a simple perturbation theory, the extent of the $\phi_{\mathrm{n}}-\phi_{3}$ mixing is qualitatively proportional to $\left(\epsilon_{3}-\epsilon_{n}\right)^{-1} .{ }^{32}$ Generally, ϕ_{3} lies at a higher energy level than ϕ_{n} in the reaction system. The more stable ϕ_{3} is, the greater $\phi_{n}-\phi_{3}$ mixing becomes, and the stronger $\mathrm{C}_{3}-\mathrm{OH}$ bond is formed.

In order to investigate the $\phi_{2}-\phi_{3}$ mixing in detail, the MOs of the reaction system were represented by a linear combination of MOs of the π-allylpalladium complex and MOs of the OH^{-}. This treatment indicates that the reaction system has only one such MO including significant mixing between ϕ_{1}, $\phi_{2}, \phi_{3}, \phi_{4}$, and ϕ_{n}, and that this MO mainly results from the ϕ_{n}. Thus the $\phi_{2}-\phi_{3}$ mixing is a second-order one, which is induced by the $\phi_{2}-\phi_{n}$ and $\phi_{3}-\phi_{n}$ mixings. The extent of the $\phi_{2}-\phi_{3}$ mixing is roughly proportional to $\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\epsilon_{n}\right)^{-1} .{ }^{33}$ When either the ϕ_{2} energy level or the ϕ_{3} one approaches the ϕ_{n} energy level, this quantity becomes large. By considering that the stable ϕ_{3} is favorable for the $\phi_{3}-\phi_{\mathrm{n}}$ mixing, the best situation is obtained when the ϕ_{3} orbital lies close to the ϕ_{n} orbital in energy. Similarly, the $\phi_{1}-\phi_{3}$ and $\phi_{2}-\phi_{4}$ mixings are second-order ones and are roughly proportional to (ϵ_{1} -$\left.\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}$ and $\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{4}-\epsilon_{n}\right)^{-1}$, respectively. ${ }^{34}$ The energy levels of $\phi_{1} \sim \phi_{4}$, greatly depend on the charge of the

Figure 5. $\left(\epsilon_{1}-\epsilon_{\mathrm{n}}\right)^{-1}\left(\epsilon_{3}-\epsilon_{\mathrm{n}}\right)^{-1}$ vs. $\left(\epsilon_{3}-\epsilon_{\mathrm{n}}\right)$ and $\left(\epsilon_{2}-\epsilon_{\mathrm{n}}\right)^{-1}\left(\epsilon_{3}-\epsilon_{\mathrm{n}}\right)^{-1}$ vs. $\left(\epsilon_{3}-\epsilon_{n}\right)$.
ligand, but the changes of the relative energy levels of $\phi_{1} \sim \phi_{4}$ are not so much different among the complexes examined. Taking the $\phi_{1}, \phi_{2}, \phi_{3}$, and ϕ_{4} energy levels as the same as those of $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{A})$, the $\left(\epsilon_{1}-\epsilon_{\mathrm{n}}\right)^{-1}\left(\epsilon_{3}-\epsilon_{\mathrm{n}}\right)^{-1}$ and the $\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{4}-\epsilon_{n}\right)^{-1}$ are calibrated for various $\epsilon_{3}-\epsilon_{n}$ values. The result is shown in Figure 5. The situation where the absolute value of $\left(\epsilon_{1}-\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}$ is larger than that of $\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{4}-\epsilon_{n}\right)^{-1}$ is desirable, because the former mixing is favorable for the reaction but the latter is unfavorable. Again, the stable ϕ_{3} orbital is desirable from the viewpoint of the $\phi_{1}-\phi_{3}$ and $\phi_{2}-\phi_{4}$ mixings.

The ϕ_{3} is composed of the π-allyl $n \pi$ orbital and the LUMO of the fragment, $\mathrm{PdCl}_{2}, \mathrm{PdClL}^{+}\left(\mathrm{L}=\mathrm{CO}\right.$ or $\left.\mathrm{PH}_{3}\right)$, etc. Consider two such fragments, A and A^{\prime}. When the A fragment has the LUMO in a lower energy level than the A^{\prime} fragment and the A and A^{\prime} LUMOs overlap with the π-allyl $n \pi$ orbital to a similar extent, the π-allyl complex of A has ϕ_{3} in a lower energy level. Since the ϕ_{3} energy level becomes stable as the LUMO of $\mathrm{PdCl}_{2}, \mathrm{PdClL}$ ($\mathrm{L}=\mathrm{CO}$ or PH_{3}), etc., becomes stable (see Table I), it is sufficient for discussing the ϕ_{3} energy level to examine the LUMO energy level of the PdCl_{2}, etc. The LUMO is mainly composed of the antibonding combination of the $\mathrm{Pd} 4 \mathrm{~d}_{x y}$ orbital and the ligand lone-pair orbital; herewith the LUMO is called $\mathrm{d}_{x y}{ }^{*}$.

The Cl^{-}ligand destabilizes the $\mathrm{d}_{x y} *$ through both the $\mathrm{Pd}-\mathrm{Cl}$ antibonding interaction and the electrostatic repulsion due to the Cl^{-}ligand. The neutral ligand, such as $\mathrm{PH}_{3}(\mathrm{~B})$ and CO (B), hardly destabilizes the $\mathrm{d}_{x y} *$ through the electrostatic repulsion. Thus, the $\mathrm{d}_{x y}$ * is destablized in $\operatorname{PdCIL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{L}$ $=\mathrm{PH}_{3}(\mathrm{~B})$ or $\left.\mathrm{CO}(\mathrm{B})\right)$ to a lesser extent than that in $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$, and the $\mathrm{d}_{x y} *$ in $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{B})$ is more stable than that in $\operatorname{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$. The neutral π-acceptor ligand, such as $\mathrm{PH}_{3}(\mathrm{~A})$ and $\mathrm{CO}(\mathrm{A})$, does not only cause no electrostatic repulsion but also reduces the electron density of the Pd to stabilize indirectly the $\mathrm{d}_{x y}{ }^{*}$. Actually, an inclusion of the π back-donation decreases the electron density of the Pd, as is shown in Table 1. The neutral π-acceptor ligand is most favorable from both viewpoints of the electrostatic repulsion and the electron density of the Pd. The neutral ligand without π-acceptor ability is moderately favorable from the viewpoint of the electrostatic repulsion. The anionic ligand is the worst. For example, $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{A})$ is the best, while $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$is the worst.

Now the second factor will be examined. Table IV gives the changes in the bond strength resulting from the nucleophilic

Table IV. Changes in Bond Strength Due to OH^{-}Attack ${ }^{a}$

		$E_{\text {Pd-Cl }}{ }^{(1)+(2)}$	$E_{\text {Pd-Cl }}{ }^{(3)}$	$E_{\text {Pd-L }}{ }^{(1)+(2)}$	$E_{\text {Pd-L }}{ }^{(3)}$	$E_{\text {C-O }}{ }^{(1)+(2)}$	$E_{\mathrm{C}-\mathrm{O}^{(3)}}$
$\begin{aligned} & \mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-} \\ & \mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \end{aligned}$		$0.80{ }^{\text {b }}$	$0.46{ }^{\text {b }}$			-2.13	0.21
	$(\mathrm{B})^{c}$	0.90	0.72	0.88	-0.27	-3.08	-0.26
		$(1.00$	0.72	0.73	-0.22	-2.90	0.0)
	$(\mathrm{A})^{c}$	0.94	0.65	-0.02	-0.18	-3.49	0.35
		(1.02	0.65	-0.18	-0.05	-3.32	-0.12)
$\begin{aligned} & {\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}} \\ & \mathrm{PdCl}(\mathrm{CO})\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right) \end{aligned}$		$1.01{ }^{\text {d }}$	$0.62{ }^{\text {d }}$	$-0.59{ }^{e}$	-0.12^{e}	-3.30	-0.22
	$(\mathrm{B})^{c}$	0.90	0.70	0.60	-0.57	-3.42	-0.34
		$(0.97$	0.70	0.30	-0.57	-3.27	-0.09)
	$(\mathrm{A})^{c}$	1.00	0.61	-0.58	-0.44	-3.74	-0.40
		(1.10	0.62	-0.72	-0.44	-3.65	-0.22)
$\operatorname{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$	(B)			$0.95{ }^{\text {b }}$	$-0.29{ }^{\text {b }}$	-3.98	-0.28
	(A)			0.10^{b}	-0.15^{b}	-4.76	-0.31

${ }^{a} \mathrm{C}-\mathrm{OH}=2.0 \AA$. Bond strength is described with E_{AB} value (eV). ${ }^{b}$ The averaged value of two $\mathrm{Pd}-\mathrm{Cl}$ or $\mathrm{Pd}-\mathrm{PH}_{3}$ bonds. ${ }^{c}$ In parentheses: the C_{1} attack. Others: the C_{3} attack. ${ }^{d}$ The averaged value of two $\mathrm{Pd}-\mathrm{Cl}$ bonds which are adjacent to the π-allyl ligand attacked by the OH^{-}. e The other two $\mathrm{Pd}-\mathrm{Cl}$ bonds.
attack. As palladium(II) is reduced to palladium(0) by the nucleophilic attack, the $\mathrm{Pd}-\mathrm{Cl}$ electrostatic interaction weakens (see $\Delta E_{\mathrm{Pd}-\mathrm{Cl}}{ }^{(3)}$) and the electron donation from the Cl^{-}ligand to the palladium becomes difficult (see $\left.\Delta E_{\mathrm{Pd}-\mathrm{Cl}}{ }^{(1)+(2)}\right)$. Consequently, the $\mathrm{Pd}-\mathrm{Cl}$ bond weakens, except for the $\mathrm{Pd}-\mathrm{Cl}$ in $\left[\mathrm{PdCl}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\right]_{2}$. In the latter, the $\mathrm{Pd}-\mathrm{Cl}$ bond near the π-allyl ligand attacked by the nucleophile becomes weak, whereas another $\mathrm{Pd}-\mathrm{Cl}$ bond becomes strong. The $\mathrm{Pd}-\mathrm{Cl}$ bond weakening is compensated and the destabilization due to the $\mathrm{Pd}-\mathrm{Cl}$ bond weakening is less than that of $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$. The neutral ligand, such as $\mathrm{PH}_{3}(\mathrm{~B})$ and CO (B), is slightly positively charged, for such a ligand donates somewhat its electrons to the palladium. When palladium is reduced to palladium(0) by the nucleophilic attack, the electrostatic interaction between the palladium and the neutral ligand becomes less weak (see $\Delta E_{\text {Pd-L }}{ }^{(3)}$), while the σ donation from the ligand becomes difficult (see $\Delta E_{\mathrm{Pd}-\mathrm{L}}{ }^{(1)+(2)}$). Eventually, the $\mathrm{Pd}-\mathrm{PH}_{3}$ (B) and $\mathrm{Pd}-\mathrm{CO}(\mathrm{B})$ bonds moderately weaken. The $\mathrm{Pd}-\mathrm{PH}_{3}(\mathrm{~A})$ and $\mathrm{Pd}-\mathrm{CO}(\mathrm{A})$ bonds become slightly strong in $\mathrm{PdClL}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)\left(\mathrm{L}=\mathrm{PH}_{3}(\mathrm{~A})\right.$ or $\left.\mathrm{CO}(\mathrm{A})\right)$ (see $\Delta E_{\text {Pd-L }}{ }^{(1)+(2)}$ and $\Delta E_{\text {Pd-L }}{ }^{(3)}$). When palladium(II) is reduced to palladium(0), the π back-donation from the palladium to the L ligand becomes strong to strengthen the $\mathrm{Pd}-\mathrm{L}$ bond. In $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}(\mathrm{A})$, however, the $\mathrm{Pd}-\mathrm{PH}_{3}$ covalent interaction weakens slightly. Because this complex has two $\mathrm{Pd}-\mathrm{PH}_{3}$ bonds, the strengthening per a $\mathrm{Pd}-\mathrm{PH}_{3}$ would be less than that in $\mathrm{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)$. Since $\Delta E_{\mathrm{Pd}-\mathrm{PH}_{3}}+$ $\Delta E_{\mathrm{Pd}-\mathrm{PH}_{3}}$ of this complex is less than $\Delta E_{\mathrm{Pd}-\mathrm{Cl}}+\Delta E_{\mathrm{Pd}-\mathrm{L}}$ of other complexes, this complex receives the smallest bond weakening. Thus, from the viewpoint of the changes in the coordinate bond strength, the neutral π-acceptor ligand is most favorable, the neutral ligand without π-acceptor ability is moderately favorable, and the anionic ligand is the worst.

Finally, the effect of the electron density will be examined. Both the strength of the $\mathrm{C}-\mathrm{O}$ covalent interaction and the $\mathrm{C}-\mathrm{O}$ electrostatic interaction are given in Table IV. The electrostatic interaction is less than one-tenth of the total $\mathrm{C}-\mathrm{O}$ interaction. The electrostatic interaction seems an unimportant factor to determine the reactivity. Thus, the reaction examined here is considered not a charge control but a frontier control. ${ }^{35}$

Conclusion

In this work, a reasonable feature of the reaction is obtained from MO calculations: when a nucleophile, Y, attacks the π-allyl ligand, palladium(II) is reduced to palladium(0), and the allyl derivative, $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{Y}$, leaves the palladium(0) via an intermediate, π-olefin palladium(0) complex. A successful discussion is presented for the reactivity of the π-allylpalladium to the nucleophile. It is suggested that $\mathrm{Pd}\left(\mathrm{PH}_{3}\right)_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{+}$is extremely reactive, which supports the
proposal of Trost et al. $\mathrm{PdCl}_{2}\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)^{-}$is, on the other hand, suggested to be unreactive. The ligand effect on the reactivity is discussed from various viewpoints: (1) orbital mixing, (2) changes in the $\mathrm{Pd}-\mathrm{Cl}$ and $\mathrm{Pd}-\mathrm{L}$ bond strength, and (3) electron density of the C_{3} atom. The former two factors are important, while the last one seems unimportant. The stable ϕ_{3} orbital results in a favorable situation regarding the orbital mixing. The neutral π-acceptor ligand most stabilizes the ϕ_{3} orbital energy, while the anionic ligand most destabilizes it. As palladium (II) is reduced to palladium(0) during the reaction, the coordinate bond of the neutral π-acceptor ligand becomes strong with the formation of the π back-bonding to stabilize the final state of the reaction system, while the coordinate bond of the anionic ligand becomes much weaker to destabilize the final state. From the viewpoints of the orbital mixing and the changes in the coordinate bond strength, the neutral π-acceptor ligand is most favorable for the reaction, while the anionic ligand is most unfavorable. Thus, it is theoretically elucidated why addition of a neutral π-acceptor ligand, such as triphenylphosphine, accelerates the reaction.
Acknowledgment. The authors would like to thank Dr. Fujimoto (Kyoto University) for his kind supply of a computer program of configuration a nalysis. They also thank Mr. Tsuru for his help with MO calculations. MO calculations were performed with the Facom M-190 computer of the Data Processing Center at Kyushu University. This work was partially supported by a grant from the Ministry of Education (No. 435045).

Appendix

The $4 \mathrm{~d}, 5 \mathrm{~s}$, and 5 p orbitals were used as a basis for Pd , and the $3 \mathrm{~s}, 3 \mathrm{p}$, and 3 d were used as a basis for P , while the 3 s and 3 p of the P were used in calculating the complex including the PH_{3} (B). The MO method examined needs the valence state ionization potential, I_{r}, the one-center Coulomb repulsion integral, $\gamma_{r r}$, the parameters of the modified Ohno equation, ${ }^{18}$ a_{r}, and the orbital exponent, ζ_{r}. The I_{r} was evaluated from atomic spectra ${ }^{36 \mathrm{a}}$ for all orbitals of the Pd and the 3 d orbital of the P , while the I_{r} of others was taken from previous work. ${ }^{36 \mathrm{~b}}$ The $\gamma_{r r}$ are taken from the previous work ${ }^{36 \mathrm{~b}, \mathrm{c}}$ for all orbitals of the Pd and the 3 s and 3 p orbitals of the P . The $\gamma_{3 \mathrm{~d} .3 \mathrm{~d}}$ of the P atom was theoretically calculated with the Burns exponent, ${ }^{36 \mathrm{~d}}$ and then multiplied by a scaling factor. ${ }^{36 \mathrm{c}}$ The a_{r} values were determined according the procedure described in ref 18 . The evaluated or estimated values follow: $\mathrm{Pd}, I_{4 \mathrm{~d}}=$ $8.51, I_{5 \mathrm{~s}}=7.25, I_{5 \mathrm{p}}=3.67, a_{5 \mathrm{~s}}=1.52, a_{5 \mathrm{p}}=2.34 \mathrm{eV} ; \mathrm{P}, I_{3 \mathrm{~d}}$ $=2.72, \gamma_{3 \mathrm{~d}, 3 \mathrm{~d}}=4.38, a_{3 \mathrm{~d}}=2.58 \mathrm{eV}$. Clementi's STOs ${ }^{36 \mathrm{e}}$ were used for all orbitals except the 4 d orbital of the Pd. The dou-ble- ζ orbital was used for the 4 d of the $\mathrm{Pd} .{ }^{36 f}$

References and Notes

(1) (a) P. M. Maitlis, "The Organic Chemistry of Palladium", Vol. I and II, Academic Press, New York, 1971; (b) "Transition Metals in Homogeneous Catalysis", G. N. Schrauzer, Ed., Marcel Dekker, New York, 1971 ; (c) F. R. Hartley, "The Chemistry of Platinum and Palladium", Applied Science Publishers, London, 1973; (d) M. M. Taqui Khan and A. E. Martell, ''Homogeneous Catalysis by Metal Complexes', Vol. II, Academic Press, New York, 1974.
(2) J. Tsuil, Acc. Chem. Res., 2, 144 (1969); 6, 8 (1973).
(3) P. M. Henry, Acc. Chem. Res., 6, 16 (1973).
(4) (a) J. Tsuii, H. Takahashi, and M. Morikawa, Tetrahedron Lett., 4387 (1965); (b) Kogyo Kagaku Zasshi, 69, 920 (1966).
(5) K. E. Atkins, W. E. Walber, and R. Manyik, Tetrahedron Lett., 3821 (1970).
(6) K. Takahashi, A. Miyake, and G. Hata, Bull. Chem. Soc. Jpn., 45, 230 (1972).
(7) K. Takahashi, G. Hata, and A. Miyake, Bull. Chem. Soc. Jpn., 46, 1012 (1973).
(8) H. Onoue, I. Moritani, and S.-l. Murahashi, Tetrahedron Lett., 121 (1973).
(9) B. M. Trost and T. J. Fullerton, J. Am. Chem. Soc., 95, 292 (1973).
(10) B. M. Trost, T. J. Dietsche, and T. J. Fullerton, J. Org. Chem., 39, 737 (1974).
(11) B. M. Trost, W. P. Conway, P. E. Strege, and T. J. Dietshe, J. Am. Chem. Soc., 96, 7165 (1974).
(12) B. M. Trost and L. Weber, J. Am. Chem. Soc., 97, 1611 (1975).
(13) B. M. Trost and P. E. Strege, Tetrahedron Lett., 2603 (1974).
(14) B. M. Trost and P. E. Strege, J. Am. Chem. Soc., 97, 2534 (1975).
(15) B. M. Trost and T. J. Dietshe, J. Am. Chem. Soc., 95, 8200 (1973).
(16) (a) B. M. Trost, L. Weber, P. E. Strege, T. J. Fullerton, and T. J. Dietsche, J. Am. Chem. Soc., 100, 3416 (1978); (b) ibid., 100, 3426 (1978).
(17) L. S. Hegedus, T. Hayashi, and W. H. Darlington, J. Am. Chem. Soc., 100, 7747 (1978).
(18) (a) S. Sakaki, H. Kato, and T. Kawamura, Bull. Chem. Soc. Jpn., 48, 195 (1975); (b). S. Sakaki, N. Hagiwara, N. Iwasaki, and A. Ohyoshi, ibid., 50, 14 (1977).
(19) S. Sakaki, N. Kudou, and A. Ohyoshi, Inorg. Chem., 16, 202 (1977).
(20) S. Sakaki, K. Hori, and A. Ohyoshi, Inorg. Chem., 17, 3183 (1978).
(21) M. S. Gordon, J. Am. Chem. Soc., 91, 3122 (1969).
(22) S. Ehrenson and S. Seltzer, Theor. Chim. Acta, 20, 17 (1971).
(23) (a) Thls neglect results in the neglect of both interactions between the Pd $4 \mathrm{~d} \pi$ and the CO π orbital and between the Pd $4 \mathrm{~d} \pi$ and the CO π^{*} orbltal. It is, however, conceivable that the former interaction contributes little to the coordination, because both the $\mathrm{Pd} 4 \mathrm{~d} \pi$ and $\mathrm{CO} \pi$ orbitals are doubley occupied. Thus, the above neglect mainly results In the neglect of the latter interaction. In fact, this neglect increases the electron density of the Pd atom and reduces the electron density of the CO ligand as it shown in Table I. (b) Strictly, it is correct that, although the basis set of the B systems in-
clude the P 3d orbitals, the overlap integrals between the Pd $4 d \pi$ and the $P 3 d \pi$ are neglected. However, the P 3d orbitals are excluded from the basls set in the B system, because the basis set including the $P 3 d$ orbitals becomes too large and MO calculations with such a large basis set are time consuming. The exclusion of the P 3d orbitals gave the same results as those obtained when the π back-donation was excluded. Thus, the present method seems reasonable.
(24) H. Fujimoto, S. Kato, S. Yamabe, and K. Fukui, J. Chem. Phys., 60, 572 (1974).
(25) A. E. Smith, Acta Crystallogr., 18, 331 (1965).
(26) A. E. Smith, Acta Crystallogr., Sect. A, Suppl., 25, 161 (1969).
(27) D. R. Russell, P. A. Tucker, and S. Wilson, J. Organomet. Chem., 104, 387 (1976).
(28) B. Akermark, J. E. Bäckvall, A. Löwenborg, and K. Zetterberg, J. Organomet. Chem., 166, C33 (1979).
(29) N. Numata and H. Kurosawa, J. Organomet. Chem., 131, 301 (1977).
(30) ΔE_{b} is defined as follows: $\Delta E_{b}=$ [binding energy between the PdL $L_{2}{ }^{n+}$ fragment and $\pi-\mathrm{C}_{3} \mathrm{H}_{5}^{-}$] - [blnding energy between PdCl_{2} and $\pi-\mathrm{C}_{3} \mathrm{H}_{5}^{-}$], where the L_{1} and $L_{2}=\mathrm{Cl}^{-}, \mathrm{PH}_{3}$, or CO .
(31) R. J. Goodiellow and L. M. Venanzi, J. Chem. Soc. A, 784 (1966).
(32) Strictly speaking, the extent of the $\phi_{n}-\phi_{3}$ mixing is proportional to $\beta_{3 n} /\left(\epsilon_{3}\right.$ $-\epsilon_{n}$), where $\beta_{3 n}=\Sigma, \Sigma_{s} C_{3 r} C_{n s}\langle r| H|s\rangle$. While the $C_{n s}$ is constant for various reaction systems, the $C_{3 r}$ slightly depends on the kinds of π-allylpalladium complexes, and it becomes large as ϕ_{3} becomes stable. As ϕ_{3} becomes stable, $\beta_{3 n}$ slightly increases and $\epsilon_{3}-\epsilon_{n}$ becomes small. Thus, the mixing becomes large mainly due to the $\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}$ quantity and slightly due to $\beta_{3 n}$.
(33) Strictly speaking, the extent of this mixing is also proportional to $\beta_{2 n} \beta_{3 n}\left(\epsilon_{2}\right.$ $\left.-\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}$, where $\left.\beta_{2 n} \beta_{3 n} \simeq C_{2 p} c_{C_{3 p}} c^{c}{ }_{p_{\pi}} c|H| p_{\pi}{ }^{0}\right\rangle^{2}$. The product, $C_{2 p}{ }^{c} C_{3 p}{ }^{c}$, is not so much different among the complexes examined, while this value slightly increases as ϕ_{3} becomes stable. Thus, the extent of the mixing is approximately proportional to $\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}$.
(34) Although these mixings are, strictly speaking, proportional to $\beta_{1 n} \beta_{3 n}\left(\epsilon_{1}\right.$ $\left.-\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\epsilon_{n}\right)^{-1}$ and $\beta_{2 n} \beta_{4 n}\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{4}-\epsilon_{n}\right)^{-1}$, respectively, the $\beta_{2 n} \beta_{4 n}$ and $\beta_{1 n} \beta_{3 n}$ quantities are not so much different among the complexes. Furthermore, $\beta_{2 n} \beta_{4 n}$ is almost the same as $\beta_{1 n} \beta_{3 n}$; for example. $\beta_{2 n} \beta_{4 n} \simeq 0.18 C_{p_{\pi}}{ }_{2}\left\langle p_{\pi}^{c}\right| H\left|p_{\pi}{ }^{\circ}\right\rangle^{2}$, and $\beta_{1 n} \beta_{3 n} \simeq 0.16 C_{p_{\pi}}{ }^{2}\left\langle p_{\pi}{ }^{2}\right\rangle^{2} H-$ $\left\{\begin{array}{l}2 n{ }^{4 n} \\ \left.P_{\pi}\right)^{2} \text {, for } \operatorname{PdCl}\left(\mathrm{PH}_{3}\right)\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)(\mathrm{A}) \text {. Thus, to examine the }\left(\epsilon_{1}-\epsilon_{n}\right)^{-1}\left(\epsilon_{3}-\right.\end{array}\right.$ $\left.\epsilon_{n}\right)^{\frac{\pi}{1}}$ and $\left(\epsilon_{2}-\epsilon_{n}\right)^{-1}\left(\epsilon_{4}-\epsilon_{n}\right)^{-1}$ quantities is enough to investigate the relative extent of the $\phi_{1}-\phi_{3}$ and $\phi_{2}-\phi_{4}$ mixings.
(35) G. Klopman, J. Am. Chem. Soc., 90,223 (1968).
(36) (a) C. E. Moore, "Atomic Energy Levels", Natl. Bur. Stand. (U.S.), Circ., No. 467 (1958); (b) J. Hinze and H. H. Jaffé, J. Am. Chem. Soc., 84, 540 (1962); (c) L. Di Sipio, E. Tondello, G. De Michelis, and L. Oleari, Chem. Phys. Lett., 11, 287 (1971); (d) G. Burns, J. Chem. Phys., 41, 1521 (1964) (e) The scaling factor $=0.5\left[\left(\gamma_{3 \mathrm{~s}, 3 \mathrm{~s}, \text { semi-emp }} / \gamma_{3 \mathrm{~s}, 3 \mathrm{~s}, 1 \mathrm{neor}}\right)+\left(\gamma_{3 p, 3 p, \text { semi- }}\right.\right.$ emp $\left./ \gamma_{3 p, 3 p, \text { theor }}\right)$, where $\gamma_{r r \text {, theor }}$ is the theoretically calculated value with STO. (e) E. Clementi and D. L. Raimondi, J. Chem. Phys., 38, 2686 (1963); (f) H. Basch and H. B. Gray, Theor, Chim. Acta, 4, 367 (1966).

Nitrosomethane and Its Nitrone and Oxime Isomers. A Theoretical Study of 1,2- and 1,3-Intramolecular Hydrogen Shifts

Paul D. Adeney, Willem J. Bouma, Leo Radom,* and William R. Rodwell
Contribution from the Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600, Australia. Received May 2, 1979

Abstract

Ab initio molecular orbital theory with minimal (STO-3G), split-valence (4-31G), and split-valence plus polarization ($6-31 \mathrm{G}^{+}, 6-31 \mathrm{G}^{++}$) basis sets and with electron correlation incorporated using $\mathrm{M} \phi$ ler-Plesset perturbation theory terminated at second (MP2) and third (MP3) order has been used to investigate the potential-energy surface connecting nitrosomethane (1) and formaldoxime (2,3). The reaction path (A) for the 1,3 -sigmatropic hydrogen shift leading to syn-formaldoxime (2) has been examined and the corresponding transition-state structure (5) has been determined. The transition state (6) for the subsequent isomerization of syn-formaldoxime (2) to its more stable anti isomer (3) has also been determined. A second reaction path (B), involving the isomerization of nitrosomethane (1) to anti-formaldoxime (3) by means of two successive 1,2 hydrogen shifts, is found to proceed via formaldonitrone (4) as an intermediate. The transition states (7 and 8) for the individual 1,2 -hydrogen shifts have been determined. Both reaction paths A and B are found to involve high activation barriers, the rearrangement via the nitrone 4 being slightly favored. These results demonstrate the stability of nitrosomethane with respect to intramolecular rearrangement and also suggest that formaldonitrone might be amenable to experimental observation. STO3G and 4-3IG optimized structures for 1-8 are reported.

Introduction

Nitrosomethane is known to be less stable than its isomer formaldoxime and original attempts to isolate this molecule
failed owing to its speedy isomerization to formaldoxime. More recently, however, the dimer of nitrosomethane has been prepared, ${ }^{2-4}$ and has been shown in the gas phase to be in equilibrium with the monomer. ${ }^{5}$ In 1968, the microwave

